
An inverse natural convection problem of estimating the
strength of a heat source

H.M. Park*, O.Y. Chung

Department of Chemical Engineering, Sogang University, Shinsoo-Dong, Mapo-Gu, Seoul, South Korea

Received 20 October 1998; received in revised form 18 March 1999

Abstract

The inverse problem of determining the time-varying strength of a heat source, which causes natural convection

in a two-dimensional cavity, is considered. The Boussinesq equation is used to model the natural convection induced
by the heat source. The inverse natural convection problem is posed as a minimization problem of the least-square
criterion, which is solved by a conjugate gradient method employing the adjoint equation to determine the descent
direction. The present method solves the inverse natural convection problem accurately without any simpli®cation of

the governing Boussinesq equation. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The aim of the present work is to determine the

unknown strength of a time-varying heat source, which

causes natural convection in a cavity, based on tem-

perature measurement in the domain. If the strength of

the heat source is known, one solves the Boussinesq

equation containing a heat source term to obtain the

velocity and temperature ®eld. This is the direct

problem. On the contrary, the strength of the heat

source can be determined with the help of extra con-

ditions such as temperature measurements at the

interior points of the domain. Such a problem is called

an inverse problem and can be regarded as discovering

the cause from a known result. The inverse heat trans-

fer problems have numerous applications in various

branches of science and engineering, but the solution

of inverse problems is not straightforward due to their

ill-posedness in the sense of Hadamard: small pertur-

bations in the observed functions may result into large

changes in the corresponding solutions [1±3]. The ill-

posed nature renders many algorithms used for direct

problems inapplicable to inverse problems, and special

numerical techniques must be employed to stabilize the

results of calculations. Commonly adopted technique is

the regularization techniques that impose additional

restrictions on an admissible solution. Recently the

conjugate gradient methods, where the regularization

is inherently built in the iterative procedure, have been

employed in the solution of inverse heat conduction

problems (IHCP) and found to be very e�cient [4].

Contrary to IHCP, inverse convection problems

have not been addressed frequently partly due to their

mathematical complexity as compared with the inverse

heat conduction. Convective heat transfer is governed

by a set of nonlinear partial di�erential equations such

as the continuity equation, the Navier±Stokes equation

and the energy equation. Therefore, the convection

problems are di�cult to solve and very few papers

devoted to inverse convection have been published so

far. Huang and OÈ zisik [5] considers an inverse problem

of determining wall heat ¯ux of linear forced convec-

tion in the fully developed channel ¯ow from the tem-

perature measurement in the domain. The velocity ®eld

is assumed to be the fully developed parabolic one,

International Journal of Heat and Mass Transfer 42 (1999) 4259±4273

0017-9310/99/$ - see front matter # 1999 Elsevier Science Ltd. All rights reserved.

PII: S0017-9310(99 )00100-3

www.elsevier.com/locate/ijhmt

* Corresponding author. Tel.: +82-2-705-8482.



and only the linear convection±conduction equation is

dealt to determine the unknown wall heat ¯ux. Further

simpli®cation introduced is the neglect of axial conduc-

tion, which makes the governing equation parabolic

rather than elliptic. They employed the conjugate

gradient method [4], which consists of a direct pro-

blem, an adjoint problem and the sensitivity problem,

to solve the inverse convection problem. For parabolic

or unsteady problems, the adjoint problem does not

yield a correct conjugate direction at the end point [6],

and Huang and OÈ zisik [5] circumvent this di�culty

employing the modi®ed conjugate gradient method [7]

in addition to the regular conjugate gradient method.

Moutsoglou [8] investigated a steady, two-dimen-

sional, laminar-free convection ¯ow in a vertical chan-

nel. The governing equations are simpli®ed by

neglecting the axial di�usion of momentum and heat

and further by decoupling the longitudinal and lateral

pressure gradients, through which the governing

equations are parabolized. He considers the case when

the heat ¯ux at one wall is unknown and the tempera-

ture for the other insulated wall can be measured. The

ill-posedness symptoms of the inverse problems are cir-

cumvented by adopting the sequential function speci®-

cation method which is well suited for parabolic

problems.

Prud'homme and Nguyen [9] and Nguyen [10] con-

sidered an inverse natural convection problem employ-

ing a conjugate gradient method. They adopt the

stream function-vorticity formulation to describe the

¯ow ®eld and use the adjoint variable method to deter-

mine the conjugate direction. Since they do not employ

the modi®ed conjugate gradient method [7] to estimate

the ®nal time heat ¯ux, q(tf ), their initial approxi-

mation of q(tf ) must be a reasonably accurate one.

In the present work, we consider an inverse natural

convection problem of determining the unknown

strength of a time-varying heat source in a cavity from

the temperature measurement within the ¯ow. The

governing equation of the natural convection, the

Boussinesq equation, is employed without any simpli®-

cation to determine the velocity and temperature ®elds.

The inverse problem is posed as an optimization pro-

blem which is solved by a conjugate gradient method,

employing the adjoint equation to obtain the descent

direction. The di�culty of obtaining the correct conju-

Nomenclature

d n(t ) conjugate direction, Eq. (25)
dx half width of the system domain
dy half depth of the system domain

G(t ) heat source function
GX(1) matrix de®ned in Eq. (60)
GX(2) matrix de®ned in Eq. (61)

GY(1) matrix de®ned in Eq. (62)
GY(2) matrix de®ned in Eq. (63)
J performance function, Eq. (11)

MO number of measurement points
NX number of cells in the x-direction in the

Chebyshev pseudospectral method
NY number of cells in the y-direction in the

Chebyshev pseudospectral method
P pressure
Pr Prandtl number

q adjoint pressure ®eld
R Rayleigh number
t time

tf ®nal time
T temperature ®eld
T �cold temperature at the boundary

T �hot characteristic temperature of the system
T �sys average temperature of the system
v velocity ®eld.

Greek symbols
a thermal expansion coe�cient
g n parameter de®ned in Eq. (26)

d(x ) Dirac delta function
dn (x ) function de®ned in Eq. (8)
dG variation of the heat source function

dJ variation of the performance function J
dP variation of the pressure ®eld
dT variation of the temperature ®eld

Z adjoint temperature ®eld
k thermal di�usivity
n kinematic viscosity
x adjoint velocity ®eld

r optimal step length in the conjugate gradi-
ent method, Eq. (31)

s noise level, Eq. (70)

t tfÿt
HJ gradient of the performance function.

Subscripts
m measurement point

mCG modi®ed conjugate gradient.

Superscripts
� dimensional quantities

$ measured variable.
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gate direction at the end point is overcome by employ-
ing the modi®ed conjugate gradient method [5,7]. The

advantage of the present algorithm adopted is that no
a priori information is needed on the shape of an
unknown function, since the solution automatically

determines the functional form over the whole time
domain. Because the governing equation is not simpli-
®ed in the present analysis of the inverse natural con-

vection problem, this method can be applied to many
di�erent inverse convection problems to yield rigorous
results.

2. The system and governing equations

We consider a two-dimensional square domain with
a time-varying heat source G(t ) located at (x $, y $).
The inverse problem at hand is the estimation of the
unknown function G(t ) based on the temperature read-

ings of a thermocouple located inside the domain. Due
to the heat source, natural convection is induced. The
¯ow pattern is determined by the heat source function

G(t ). Since the unsteady temperature ®eld inside the
cavity is mainly decided by the ¯uid ¯ow in the cavity,
we try to determine the unknown function G(t ) from

the unsteady temperature readings of a thermocouple
located in the cavity.
We use a superscript asterisk to denote dimensional

quantities, and introduce the following dimensionless

variables:

x � x �

dx
, y � y�

dy
, t � kt�

d 2
y

, v � dyv�

k
,

T � T � ÿ T �cold

T �hot ÿ T �cold

, P 0 � d 2
y P
�

rk2

�1�

where T � is the temperature, T �cold is the temperature
at the boundary, T �hot is the characteristic temperature

of the system, t � is time, v� is the velocity ®eld, P � is
the pressure ®eld. k is the thermal di�usivity, r is the
density, dx is the half width of the cavity and dy is the

half depth of the cavity. We denote the dimensional
heat generation per unit volume per time as
G �(t �)dn (x

�ÿx �$)dn ( y �ÿy �$), where (x $, y $) is the lo-
cation of the heat source. Then the set of governing

equations in dimensionless variables are:

r � v � 0 �2�

@v

@ t
� v � rv � ÿrP� Pr r2v� R Pr Tj �3�

@T

@ t
� v � rT � r2T� G�t�dn�xÿ x y�dn� yÿ yy� �4�

where P is the modi®ed pressure given by:

P � P 0 ÿ �T �cold ÿ T �sys�
d 3
y

k2
agy �5a�

and a is the thermal coe�cient. Here T �sys is the aver-

age temperature of the system given by;

T �sys � 1
2 �T �hot � T �cold� �5b�

The dimensionless group R is the Rayleigh number

and Pr is the Prandtl number de®ned as follows:

R � ag
�T �hot ÿ T �cold�d 3

y

kn
�5c�

Pr � n
k

�5d�

where n is the kinematic viscosity. The dimensionless
strength of the heat source G(t ) is related to the

dimensional strength G �(t �) as follows:

G�t� � G ��t��dy
�T �hot ÿ T �cold�kdx

�6a�

where k is the thermal conductivity. The characteristic

temperature of the system T �hot is related to the charac-
teristic magnitude of the dimensional heat source G �sys
by the following equation

T �hot ÿ T �cold �
G �sys

k
�6b�

Eqs. (5c) and (6b) yield another expression for the

Rayleigh number;

R � ag
d3yG

�
sys

knk
�7�

The function dn (x ), which approximates the point
source in the domain, is de®ned by:

dn�xÿ x y� � n

2 cosh2�n�xÿ x y�� �8�

and becomes the Dirac delta function as n approaches

in®nity. In the present work, we take n= 20 with (x $,
y $)=(0.75, ÿ0.75). The shape and strength of the
point source d20(xÿx $)d20( yÿy $) is plotted in Fig. 1,

together with the grid system (20 � 20) employed in
the numerical computation. In the same ®gure, we also
plot a typical ¯ow pattern of natural convection

arising in the present investigation and indicate the
reference location of the temperature measurement
point using a small circle. The relevant initial and
boundary conditions are

t � 0, v � 0, T � 0 �9�

H.M. Park, O.Y. Chung / Int. J. Heat Mass Transfer 42 (1999) 4259±4273 4261



x �21, v � 0,
@T

@x
� 0 �10a�

y �21, v � 0, T � 0 �10b�

3. The inverse natural convection problem

The temperature ®eld inside the domain, which can

be easily measured at various locations, is determined
by the heat source function G(t ). Therefore, G(t ) can
be estimated by using the measured values of the tem-

perature ®eld at certain locations. The performance
function for the identi®cation of G(t ) is expressed by
the sum of square residuals between the calculated and
observed temperatures as follows:

J � 1

2

XMO

m�1

�tf
0

�T�xm, ym, t� ÿ T y�xm, ym, t��2 dt �11�

where T(xm, ym, t ) is the calculated temperature,
T $(xm, ym, t ) is the observed temperature at the lo-

cation (xm, ym), and MO is the total number of
measurement points. Although only one measurement
point is employed in the present work (i.e., MO = 1),

summation over the measurement points is kept to
make the formula more general. To minimize the per-

formance function (11), we need the gradient of J, HJ,
which is de®ned by

dJ�G � � J�G� dG � ÿ J�G � � hrJ, dGi

�
�tf
0

rJdG dt
�12�

where tf , the ®nal time, is 1.0. The function HJ can be
obtained by introducing the adjoint variables xxx, q and
Z such that the performance function can be rewritten

as follows:

J�G � � 1

2

XMO

m�1

�tf
0

�T�xm, ym, t� ÿ T y�xm, ym, t��2 dt

ÿ
�tf
0

�
O
xxx
�
@v

@ t
� v � rv� rPÿ Pr r2v

ÿR Pr Tj

�
dO dt�

�tf
0

�
O
q�r � v� dO dt

Fig. 1. The system and location of the function d20(xÿx $)d20( yÿy $). The strength of the source is indicated by the degree of dark-

ness. A small circle near the source denotes the reference location of the thermocouple.
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ÿ
�tf
0

�
O
Z
�
@T

@ t
� v � rTÿ r2T

ÿG�t�dn�xÿ x y�dn� yÿ yy�
�

dO dt �13�

The variation of J, dJ, is then given by the following

equation:

dJ �
XMO

m�1

�tf
0

�T�xm, ym, t� ÿ T y�xm, ym, t��

�dT�xm, ym, t� dtÿ
�tf
0

�
O
xxx
�
@dv

@ t
� dv � rv

�v � rdv� rdPÿ Pr r2dv

ÿR Pr dTj

�
dO dt�

�tf
0

�
O
q�r � dv�dO dt

ÿ
�tf
0

�
O
Z
�
@

@ t
dT� dv � rT� v � rdTÿ r2dT

ÿdG�t�dn�xÿ x y�dn� yÿ yy�
�

dO dt �14�

Integrating dJ by parts both in space and time, and
exploiting the boundary conditions for v, dv, T and
dT, the gradient of J, HJ, de®ned in Eq. (12) is found

to be the following:

rJ �
�
O
Zdn�xÿ x y�dn� yÿ yy� dO �15�

while the adjoint variables xxx, q and Z must satisfy:

@xxx
@ t
� v � rxxx � rqÿ Pr r2xxx� xxx � �rv�T � ZrT �16�

r � xxx � 0 �17�

@Z
@ t
� v � rZ � ÿr2Zÿ R Pr x y ÿ

XMO

m�1
�T�x, y, t�

ÿT y�x, y, t��d�xÿ xm�d� yÿ ym� �18�
where d(x ) is the diract delta function, superscript `T'
in Eq. (16) means the transpose and xxx � �xx, x y�. The
relevant boundary conditions are

x �21, xxx � 0,
@Z
@x
� 0 �19�

y �21, xxx � 0, Z � 0 �20�
The starting conditions are:

xxx�x, t � tf� � 0, Z�x, t � tf� � 0 �21�
For the convenience of numerical integration, we

change the time variable and rewrite Eqs. (16) and (18)
as follows:

@xxx
@t
ÿ v � rxxx � ÿrq� Pr r2xxxÿ xxx � �rv�T ÿ ZrT �22�

@Z
@t
ÿ v � rZ � r2Z� R Pr x y �

XMO

m�1
�T�x, y, t�

ÿT y�x, y, t��d�xÿ xm�d� yÿ ym� �23�
where t0 tfÿt and tf is the ®nal time.

The Fletcher±Reeves method [11], which is one of
the conjugate gradient methods, is successfully applied
to the minimization of the performance function, using
the gradient of J determined by Eq. (15). The search

direction or the conjugate direction at the ®rst step is
determined by:

d0�t� � rJ�t� �
�
O
Zdn�xÿ x y�dn� yÿ yy� dO �24�

Beginning the second iteration step, the conjugate
direction is given by

d n�t� � rJ n�t� � gnd nÿ1�t� �25�
where

gn �

�tf
t�0
�rJ n�t��2 dt�tf

t�0
�rJ nÿ1�t��2 dt

�26�

and n is the iteration number. Once the conjugate
direction is obtained, the heat source function G(t ) is
updated in that direction.

G n�1�t� � G n�t� ÿ rd n�t� �27�
The optimal step length r in the direction d n(t ) is
obtained by minimizing J(Gnÿrd n) with respect to r.
Formally, J(Gnÿrd n) is expressed as:

J�G n ÿ rd n� � 1

2

�tf
0

XMO

m�1
�T�xm, ym;G

n ÿ rdn�

ÿT y�xm, ym, t��2 dt �28�
The directional derivative of T at G(t ) in the direction
of d(t ), denoted as dT, is de®ned by

dT � lim
E40

T�G� Ed � ÿ T�G �
E

�29�

Then, the term T(xm, ym; G
nÿrd n) in Eq. (28) is ap-

proximated by

T�xm, ym;G
n ÿ rd n� � T�xm, ym;G

n�

ÿdT�xm, ym, t�r �30�
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Substituting Eq. (30) into Eq. (28), partially di�eren-
tiating it with respect to r and setting the resulting

equation equal to zero, the value of r that minimizes
J(Gnÿrd n) is obtained as

r � dJ n

K n
�31�

where

K n �
XMO

m�1

�tf
0

�dT�xm, ym, t��2 dt �32�

and

dJ n �
XMO

m�1

�tf
0

�T�xm, ym, t�

ÿT y�xm, ym, t��dT�xm, ym, t� dt �33�
The sensitivity equation which determines dT is given
by the following set of equations

r � dv � 0 �34�

@

@ t
dv� dv � rv v � rdv � ÿrdP� Pr r2dv

�R Pr dTj �35�

@

@ t
dT� dv � rT� v � rdT

� r2dT� d�t�dn�xÿ x y�dn� yÿ yy� �36�

The relevant initial and boundary conditions for the
set of sensitivity equations are

t � 0, dv�x, y, t � 0� � 0, dT�x, y, t � 0� � 0 �37�

x �21, dv � 0,
@

@x
dT � 0 �38�

y �21, dv � 0, dT � 0 �39�
The present algorithm of the conjugate gradient
method is summarized as follows:

1. Assume the heat source function G(t ) and calculate
the velocity and temperature ®elds by solving Eqs.
(2)±(10).

2. Solve the adjoint Eqs. (17), (19)±(23) from t=0 to
t=tf .

3. HJ is determined by Eq. (15).

4. The conjugate direction d n(t ) is given by Eq. (25)
with g n determined by Eq. (26).

5. Solve the sensitivity Eqs. (34)±(39).

6. The optimal step length in the conjugate direction
d n(t ) is determined by Eq. (31).

7. The heat source function G(t ) is updated according
to Eq. (27).

8. Repeat the above procedure until convergence.

4. Modi®ed conjugate gradient approach [5,7]

Although the conjugate gradient method employing
the adjoint equation, as described in the previous sec-
tion, yields the converged pro®le of the heat source

function in a short time, the estimated value of the
heat source function at the ®nal time, G(tf ), will always
be equal to the initial guess G 0(tf ). The reason for this

is obvious from Eqs. (15), (21), (25) and (27). Since the
value of Z(x, t ) is zero at the ®nal time, t=tf , the
gradient of the performance function, HJ, is also zero

at t=tf due to Eq. (15). This causes the conjugate
direction d(t ) to vanish at t=tf [cf Eq. (25)], and con-
sequently, leaves the heat source function at the ®nal
time G(tf ) remaining at its initial guess G 0(tf ). This dif-

®culty with the conjugate gradient method employing
the adjoint equation usually arises in the parabolic
equations as well as the unsteady equations. The di�-

culty encountered at the ®nal time tf can be alleviated
by the following modi®ed conjugate gradient method.
We seek a continuously di�erentiable function G(t )

such that

G�t� �
�t
a

dG�t 0�
dt 0

dt 0 �40�

From Eqs. (12) and (15), the variation of the perform-
ance function dJ may be rewritten as:

dJ �
�tf
0

dG�t�
�
O
Z�x, y, t�d20�xÿ x y�d20� yÿ yy� dO dt

(41)

If Eq. (41) is integrated by parts with respect to a time

variable, we ®nd that

dJ � ÿ
�tf
0

ddG
dt

�t
tf

�
O
Z�x, y, t 0�d20�xÿ x y�

d20� yÿ yy�dO dt 0 dt �42�

Therefore, the derivative of J with respect to dG/dt is

given by the following expression.

rJ
�

dG

dt

�
� ÿ

�t
tf

�
O
Z�x, y, t 0�d20�xÿ x y�

d20� yÿ yy�dO dt 0 �43�
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Then, we take the conjugate direction as follows:

d n�t� �
�t
0

Dn�t 0� dt 0 �44�

where

Dn � rJ
�

dG

dt

�n

�gnDnÿ1 �45�

Since dn (tf ), obtained by Eq. (44), is nonzero, the

modi®ed conjugate gradient method yields a reason-
ably accurate value of G(tf ) contrary to the previous
regular conjugate gradient method. On the other hand,

from Eq. (44) it can be seen that d n(0)=0. Then, for
the same reason with the regular conjugate gradient
method, the modi®ed conjugate gradient method will

not improve the starting value G(0). In the present
work, this dilemma is overcome by combining the
regular and modi®ed conjugate gradient method

sequentially. At the ®rst stage, we employ the modi®ed
conjugate gradient method for a certain number of

iterations until a reasonably good estimation of the
end value G(tf ) is attained. Afterwards, the regular
conjugate gradient method is adopted using the esti-

mation of the modi®ed conjugate gradient method as
the initial approximation until a converged pro®le is
obtained.

5. The Chebyshev pseudospectral method

The sets of equations governing the present problem
of inverse natural convection, i.e., the set of Eqs. (2)±
(10) for the direct problem, the set of Eqs. (17), (19)±

(23) for the adjoint problem and the set of Eqs. (34)±
(39) for the sensitivity problem, are solved by employ-
ing the following time splitting scheme to impose the

Fig. 2. (a±c) Various shapes of the heat source function considered in the present investigation.
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solenoidal conditions, Eqs. (2), (17) and (34), im-
plicitly.

5.1. Direct problem

Prediction step

v� ÿ vn

Dt
� ÿvn � rvn � Pr r2vn � R Pr T nj �46�

Pressure equation

r2Pn�1 � 1

Dt
r � v� �47�

Correction step

vn�1 ÿ v�

Dt
� ÿrPn�1 �48�

Energy equation

T n�1 ÿ T n

Dt
� ÿvn�1 � rT n�1 � r2T n�1

� G�tn�1�d20�xÿ x y�d20� yÿ yy� �49�

5.2. Adjoint equation

Prediction step

xxx� ÿ xxxl

Dt
� vl � rxxxl � Pr r2xxxl ÿ xxxl � �rvl�T ÿ ZrT l �50�

Pressure equation

r2ql�1 � 1

Dt
r � xxx� �51�

Correction step

xxxl�1 ÿ xxx�

Dt
� ÿrql�1 �52�

Fig. 3. The estimated pro®les of the heat source function. (a) Regular conjugate gradient method. (b) Modi®ed conjugate gradient

method.
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Energy adjoint equation

Zl�1 ÿ Zl

Dt
� vl�1 � rZl�1 � r2Zl�1 � R Pr�x y�l�1

�
XMO

m�1
�T l�1 ÿ �T y�l�1�d�xÿ xm�d� yÿ ym� �53�

5.3. Sensitivity equation

Prediction step

dv� ÿ dvn

Dt
� ÿdvn � rvn ÿ vn � rdvn � Pr

r2dvn � R Pr dT nj

�54�

Pressure equation

r2dPn�1 � 1

Dt
r � dv� �55�

Correction step

dvn�1 ÿ dv�

Dt
� ÿrdPn�1 �56�

Energy sensitivity equation

dT n�1 ÿ dT n

Dt
�

ÿdvn�1 � rT n�1 ÿ vn�1 � rdT n�1 � r2dT n�1

�d�tn�1�d20�xÿ x y�d20� yÿ yy� �57�

The discretization of the spatial derivatives in Eqs.
(46)±(57) is performed by using the Chebyshev
pseudospectral method [12]. Adoption of this technique

allows one to approximate di�erentiation of a function
with matrix multiplication. According to the
Chebyshev pseudospectral method the collocation
points are selected as:

x i � cos

�
p�iÿ 1�
NX

�
�1RiRNX� 1� �58�

yj � cos

�
p� jÿ 1�

NY

�
�1RjRNY� 1� �59�

where NX and NY are the number of computational
cells in the x- and y-direction, respectively. Then the

Fig. 4. The convergence of the end point value G(tf ) with respect to the iteration number for Case (a) of Fig. 2 when using the

modi®ed conjugate gradient method.
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®rst and second partial derivatives of a function u(x,
y ), de®ned for ÿ1 R x R 1 and ÿ1 R y R 1, can be
approximated by:

@u

@x
�x i, yj � �

XNX�1

l�1
~GX
�1�
il u�xl, yj � �60�

@ 2u

@x 2
�x i, yj � �

XNX�1

l�1
~GX
�2�
il u�x l, yj � �61�

@u

@y
�x i, yj � �

XNY�1

l�1
~GY
�1�
jl u�x i, yl� �62�

@ 2u

@y2
�x i, yj � �

XNY�1

l�1
~GY
�2�
jl u�x i, yl� �63�

The detailed expressions for the matrices GX(1), GX(2),
GY(1) and GY(2), are given in Ku et al. [12]. Numerical
inversion of large matrices arising in Eqs. (47), (49),

(51), (53), (55) and (57) has been done by the tensor-
product method.

6. Results

The accuracy of the present inverse analysis is exam-
ined for estimating the unknown strength of a time-

varying heat source G(t ) in the domain. Several test
cases have been run with simulated measurements
T $(xm, ym, t ), and the estimated strength of the heat

source is compared with the exact one. The grid system
adopted is (20 � 20), which is found to be su�cient to
resolve the ¯ow and temperature ®elds when dx=1 cm,
dy=0.5 cm, thermal di�usivity k=2.06 � 10ÿ5 m2/s,

a=3.36 � 10ÿ3 Kÿ1 and the Prandtl number
Pr = 0.72. The corresponding Rayleigh number is
about 4000. We consider three di�erent cases of heat

source functions G(x ), as depicted in Figs. 2(a±c). The
minimization of the performance function, Eq. (11), is
done by the conjugate gradient method of Fletcher

and Reeves [11], where the initial approximation of
G(t ) is taken to be 0.0 (constant) for all numerical ex-
periments described below. The equation of G(t ) for

Fig. 5. The rate of minimization of the performance function J when employing the combined iteration scheme.
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the three cases shown in Fig. 2 are as follows:

�a� G�t� � 4
0:3 t� 1 �0RxR0:3�

G�t� � ÿ 2
0:3 t� 7 �0:3RxR0:6�

G�t� � 3:0 �0:6RxR1� �64�

�b� G�t� � 4t� 1 �0RxR1� �65�

�c� G�t� � 2:0 �0RxR0:3�

G�t� � 5:0 �0:3RxR0:7�

G�t� � 2:0 �0:7RxR1� �66�

The accuracy of the estimation is quanti®ed by the fol-
lowing de®nition of estimation error:

Error � kGestimated ÿ Gexactk2L2

kGexactk2L2

�67�

where k�kL2
is the usual L2-norm. The simulated

measurements containing measurement errors are gen-
erated by adding random errors to the computed exact

temperatures as follows:

Fig. 6. The estimated pro®les of the heat source function G(t ) when the combined iteration scheme is employed. The iteration num-

ber of the modi®ed conjugate gradient technique and that of the regular conjugate gradient technique are indicated as well as the

estimation error. (a) Case (a) of Fig. 2. (b) Case (b) of Fig. 2. (c) Case (c) of Fig. 2.
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Tmeasured�� T y� � Texact � os �68�

where s determines the noise level, which takes values
of 0.0, 0.05, 0.1, and o is a random number between

ÿ2.576 R o R 2.576. In fact, s is the standard devi-
ation of measurement errors which are assumed to be
the same for all measurements, and o is the Gaussian

distributed random error. The above range of the o
value corresponds to the 99% con®dence bound for
the temperature measurement. Speci®cally, s=0.05

corresponds to about 3% relative measurement error
and s=0.1 induces about 6% relative measurement
error.
To check the accuracy of the present algorithm for

solving the inverse natural convection problems, we
®rst consider an idealized situation in which there are
no measurement errors, i.e., s=0.0. The temperature

recordings are assumed to be done continuously by a
thermocouple located at the reference position (0.4540,
ÿ0.7071) while the source is located at (0.75, ÿ0.75) as
shown in Fig. 1. Figs. 3(a) and (b) show the estimated
heat source function G(t ) for Case (a) when the regular
conjugate gradient (Fig. 3(a)) and the modi®ed conju-

gate gradient method (Fig. 3(b)) are employed. As
explained in the previous sections, the regular conju-

gate gradient method does not improve the end point
value G(tf ) while the modi®ed conjugate gradient
method has the same di�culty with the starting point

value G(0). The combined iteration scheme [6] is
employed to overcome this dilemma. At the ®rst stage,
we employ the modi®ed conjugate gradient method for

a certain number of iterations until a reasonably good
estimation of the end poind value G(tf ) is attained.
Afterwards, the regular conjugate gradient method is

adopted using the estimation of the modi®ed conjugate
gradient method as the initial approximation to get
the ®nal converged pro®le. Fig. 4 shows the conver-
gence of the end point value G(tf ) with respect to the

iteration number for Case (a) when using the
modi®ed conjugate gradient method. The error of G(tf )
with the modi®ed conjugate gradient method is

de®ned by:

EmCG �
X3
i�1

j G n�tf� ÿ G nÿi�tf� j
j G n�tf� j �69�

Fig. 7. The e�ect of the location of the measurement point (x �, y �) on the accuracy of the estimation. The locations of the heat

source, reference measurement point and the adopted measurement point are indicated in small boxes inserted. (a) (x �,
y �)=(0.3090, ÿ0.5878). (b) (x �, y �)=(0.1564, ÿ0.4540).
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and the iteration of the modi®ed conjugated gradient

is stopped when EmCG < 0.01.

Fig. 5 plots the rate of minimization of the perform-

ance function when the combined iteration scheme is

applied to the three cases of Fig. 2. For all three cases

investigated, the value of the performance function J is

reduced rapidly during the ®rst couple of iterations,
but we usually need many more iterations to make the

starting point value G(0) and the end point value G(tf )

converge. Figs. 6(a±c) show the estimated pro®les of

the heat source function G(t ) for the three cases of

Fig. 2. The estimated pro®les are in excellent agree-

ment with the exact heat source function over the

whole domain, with the error of the converged pro®le,

determined by Eq. (67), being 5.7364 � 10ÿ4,
1.7364 � 10ÿ4 and 1.3143 � 10ÿ3, respectively. The

number of iterations in the steps of modi®ed conjugate

gradient and regular conjugate gradient are also indi-

cated in the same ®gure.

Figs. 7(a) and (b) show the e�ect of the location of

a thermocouple on the accuracy of the estimated heat

source function. In addition to the previous reference

location (xm, ym)=(0.4540, ÿ0.7071), we consider two
more locations farther from the heat source than the

reference one, i.e. (0.3090, ÿ0.5878) and (0.1564,
ÿ0.4540). Fig. 7(a) is the estimated pro®le for Case (a)
when the measurement point is at (0.3090, ÿ0.5878)
and Fig. 7(b) is the result with the measurement point
located at (0.1564, ÿ0.4540). The locations of these
new measurement points are indicated in the small

boxes inserted in Fig. 7. Comparing the results of Fig.
6(a) with those of Fig. 7, we ®nd that as the location
of the thermocouple approaches that of the heat

source, the accuracy improves, since the sensitivity of
the temperature ®eld with respect to the heat source
increases as the distance between the measurement
point and the heat source decreases. The noticeable in-

accuracy in the estimated pro®le of G(t ) near the ®nal
time for the case of Fig. 7(b) is thought to be incurred
by the ®nite speed of information transfer from the

heat source to the measurement point. In Fig. 8 we
lengthen the measurement time duration from 1.0 to
1.5 so that the thermocouple at the new measurement

point could have su�cient time to notice the variation
of G(t ). The estimated value of G(t ) at t=tf (1.0) is
now found to be reasonably accurate.

Next, the e�ect of noise level on the accuracy of the
estimation is investigated. In all practical experimental
situations it is expected that some errors will be
induced into measurements. The following discrepancy

principle is adopted as the stopping criterion for the
iterative procedure of the conjugate gradient method
when there are measurement errors [5,6]. Assuming the

measurement errors to be the same for all thermo-
couples, i.e.

T�xm, ym, t� ÿ T y�xm, ym, t�1s �70�

Introducing this result into Eq. (11), we ®nd

J11

2

�tf
0

XMO

m�1
s2 dt � E2 �71�

Then the discrepancy principle for the stopping cri-
terion is taken as

J<E2 �72�

If the function J has a minimum value that is larger
than E 2, the following criterion is used to stop the iter-

ation

J�G �i�1�� ÿ J�G �i ��<E1 �73�

where E1 is a prescribed small number. Figs. 9(a) and
(b) are the estimated heat source function for Case (a)

of Fig. 2 when the noise level is s=0.05 and 0.1, re-
spectively. As expected, the accuracy of estimation de-
teriorates as the noise level increases.

Fig. 8. The e�ect of the duration of the measurement time on

the accuracy of estimation at t=tf (1.0).
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Finally, the e�ect of the Rayleigh number on the ac-
curacy of the estimation is investigated. As the
Rayleigh number increases, the convection pattern

becomes more and more complicated. Thus, it is
expected that the accuracy of the estimation will de-
teriorate as the Rayleigh number increases when the

same measurement point is employed. Eventually when
the Rayleigh number becomes su�ciently large the
convection is turned into turbulence, and it will be

quite di�cult to estimate G(t ) employing only one
measurement point. Figs. 10(a) and (b) show the esti-
mated pro®les of G(t ) when the Rayleigh number is
12,000 (Fig. 10(a)) and 20,000 (Fig. 10(b)). Comparing

these results with the previous one of the default
Rayleigh number 4000 (Fig. 6(a)), it is found that the
estimation error increases when the Rayleigh number

increases.

7. Conclusion

The inverse natural convection problem of estimat-

ing the unknown strength of a time-varying heat

source from the temperature measurement within the

¯ow is investigated by employing the conjugate gradi-

ent method. Contrary to the previous works on the

inverse natural convection problems, the present

method employs the exact Boussinesq equation with-

out any simpli®cations to yield rigorous results. The

gradient of the performance function needed in the

conjugated gradient technique is obtained by solving

the adjoint equation. The conjugate gradient method

employing the adjoint equation, though it is computa-

tionally very e�cient, does not correctly estimate the

end point value of the unknown function for unsteady

problems as considered in the present work. In the pre-

sent investigation, this di�culty is overcome by com-

bining the modi®ed conjugate gradient method [5,7]

with the regular conjugate gradient method. The pre-

sent method is found to solve the inverse natural con-

vection problem accurately without a priori

information about the unknown function to be esti-

mated.

Fig. 9. The e�ect of the noise level s on the accuracy of the estimation. (a) s=0.05. (b) s=0.1.
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